

DIS Sensors bv Oostergracht 40 3763 LZ Soest | The Netherlands **T** +31 (0)35 - 603 81 81 M info@dis-sensors.com W www.dis-sensors.com

CAN User Manual Inclination Safety Sensor (Type D)V2.1

Original instructions

DIS makes sense!

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

W www.dis-sensors.com

Table of Contents

1.	Introduction	.3
2.	Quick Reference Guide	3
3.	Safety, Installation, use & maintenance	4
4.	Certification	5
5.	Inclination sensor explained	5
6.	Safety function	5
7.	Hardware setup	5
8.	Signal processing	6
	8.1 Sample rate:	6
	8.2 Low-pass Bessel filter (for firmware v2.5.4 / V4.0 and above)	6
	8.3 Output filter:	.6
	8.4 Averaging:	6
	8.5 Peak Suppression Filter:	6
9.	Pre-set/zero adjustment:	7
10.	Accelerator element tolerance	7
11.	Output invalid	8
12.	Writing objects	8
13.	Changing SRDO1 settings	8
14.	Internal diagnostic tests	9
15.	CAN Predefined Connection Object ID's1	0
16.	CAN Object Dictionary Entries (Communication Profile section)1	. 1
17.	CAN Object Dictionary Entries 360v device (Application Specific Profile section)1	
18.	CAN Object Dictionary Entries ±30h and ±90h devices (Application Specific Profile section)1	
19.	EDS files1	
20.	Document revision control1	
A.	Appendixes1 Schematic overview inclination measurement (for firmware v2.5.3 / V3.1 and below)1	
B.	Appendixes2 Schematic overview inclination measurement (for firmware v2.5.4 / V4.0 and above) .1	9

List of Figures

Figure 1 Layout CAN bus connector	5
Figure 2 Schematic overview inclination measurement	
Figure 3 Schematic overview inclination measurement	19

List of Tables

Table 1 Object fields for zero value (pre-set) CRC calculation	7
Table 2 Emergency code	
Table 3 COB-ID's	
Table 4 Communication profile section	11
Table 5 Application specific profile section for 360 degree device	13
Table 6 Application specific profile section for ±30h and ±90h devices	

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

W www.dis-sensors.com

1. Introduction

This manual is only valid for CAN Open safety inclination sensor (D-type inclination sensors)

DIS CAN Open safety inclination sensor (D-type) family overview:

- Three housing types: 60x50mm plastic or aluminium (QG65), 70x60 stainless steel (QG76)
- Three inclination devices: Inclination 1-axis (vertical plane) 1x ±180° Inclination 2 axis (horizontal plane) 2x ±30° Inclination 2 axis (horizontal plane) 2x ±90°
- Various CAN settings can be configured according to the CANopen standard
- Various Sensor settings can be configured via CANopen
- CAN Device Profile CIA410 V2.0.0 is supported
- EDS files are available
- CRC calculation tool is available (2 different CRC calculations available, check your firmware version first)

2. Quick Reference Guide

- Hexadecimal figures will have suffix "h" in this manual
- CAN hardware interface: CAN2.0 A and B (complies to ISO11898-1&2)
- CAN communication profile: CAN Open (complies to CiA301 version 4.2.0 & EN50325-4)
- CAN device profile: CiA410 DSP 2.0.0 for inclinometers
- Baud-rate: default 125 kbit/s (can be set to 10, 20, 50, 125, 250, 500, 1000 kbit/s)
- Node-ID: default 01h (possible range 01h 7Fh, so max. 127 nodes)
- Event time: default 50ms for TPDO1 and TPDO2 (range 10ms 5000ms)
- TPDO1 output: 180h + node-ID (181h for node-ID 1). Default 'off'
- TPDO2 output: 280h + node-ID (281h for node-ID 1). Default 'off'
- SRDO1 normal: 0FFh + 2*node-ID (101h for node-ID 1).
- SRDO1 inverse: 100h + 2*node-ID (102h for node-ID 1).
- Byte-sequence on CAN-bus: little-endian (least significant byte first)
- Negative values: two's complement
- Two modes of operation: Event-mode (periodically autonomous messages, default on) Sync-mode(default off for TPDO1 and TPDO2)
- Heartbeat: default off.
- Vendor-ID DIS: 000001BDh (index 1018h sub index 01h)
- Firmware-version available via CAN Object Dictionary (index 1018h sub index 03h)
- Two firmware branches: CODESYS-compatible V4.0.0 and non-CODESYS-compatible V2.5.4.(as stated in the <u>release notes</u>)
- Serial number available via CAN Object Dictionary (index 1018h sub index 04h)
- Pre-set/zero adjustment available via CAN Object Dictionary (index 300Fh sub index 01h)
- Sample rate g-sensor-chip: 1600 Hz. Averaging during event-time TPDO1
- Input filter:
 - Fixed 32 taps 45dB suppression (low-pass cut off freq. 20 Hz).(for firmware v2.5.3 / V3.1 and below)
 - Bessel filter: low-pass, cut off freq. 10Hz. Controlled by CAN object 3014h. (for firmware v2.5.4 / V4.0 and above)
- Output filter: adjustable high- or low-pass filter 1st order. Controlled by CAN object 300Eh.)
- Document data-types definition:
 - U8 Unsigned 8-bits number (0 255)
 - U16 Unsigned 16-bit number (0 65535)
 - U32 Unsigned 32-bit number (0 4294967295)
 - S8 Signed 8-bits number (-128 +127) (also known as 'Integer 8')
 - S16 Signed 16-bits number (-32768 +32767) (also known as 'Integer 16')
 - S32 Signed 32-bits number (-2147483648 +2147483647) (also known as 'Integer 32')

T +31 (0)35 - 603 81 81

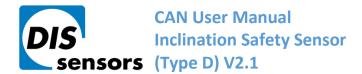
M info@dis-sensors.com

W www.dis-sensors.com

3. Safety, Installation, use & maintenance

- By ignoring the safety instructions the manufacturer cannot be hold responsible for any damage or hazard.
- If any damage is noticed (M12 connector(s) and/or the enclosure) the device must be replaced by a new one in order to avoid hazard.
- Never move the sensor by pulling the cable.
- The device should only be used in situations covered by the datasheet.
- Only a SELV power supply should be used.
- Only the CANopen Safety interface according to EN50325-5 should be used.
- As this device is accelerometer-based the sensor is inherent sensitive for accelerations/vibrations. Application specific testing must be carried out to check whether this sensor will fulfil customer requirements.
- The family of sensors involved will have a variety of types due to different outputs, measuring ranges, enclosures and connection options. Datasheets are available for each specific type. Customer must select and read the datasheet for the product he is using.
- The Safety Related Fault Response Time (SRFRT) of this device is defined as the maximum time the sensor will report a non-safe situation to the outside world, after detecting an internal safety error. Actual value is specified in the datasheet
- Configuration of the device like changing Node-ID, COB-ID's and centering (sensor-offset) can only be done after a new CRC-code is generated separately and written to the device.
- The sensor should be mounted on a stable flat surface with all screws tightened.
- Use only double twisted double shielded CAN cables.
- The proof test interval for this sensor is 20 years. After this interval the sensor should be replaced or checked by comparing the output to a reference sensor or checked / recalibrated by the manufacturer. This is to check for any non-detectable faults and/or degradation. This check / recalibration is not included in the price.
- The calculated MTTFd of the sensor is specified in the datasheet.
- This sensor does not require any maintenance between proof-test intervals.

The user of this safety device shall only use this device when:


- he is educated to design in / use functional safety sensors.
- he has taken knowledge of both the datasheet and the user manual.
- the zeroing / centering function is only performed in the right position by an authorized person.
- the redundancy compare parameters (both Redundancy Compare Time and Redundancy Compare Angle) are set by the customer according to the application demands. The actual values used by the customer should fit the application involved. Before using this sensor and with the settings chosen the customer should evaluate risks in order to check whether the chosen settings satisfy his safety requirements. Manufacturer is not responsible for any damage caused by these customer-setting, even when the manufacturer defaults are used.
- the bandwidth settings are according to the application demand
- the device is used inside the specified environmental situation

The user of this safety device shall consider its output as 'defective' in the following situations:

- the device is not responding
- the device is not running in operational state
- the device is not running in the desired mode of operation. To be checked at installation/start-up.
- the device is sending an emergency message
- the device switches to NMT stop state
- the safeguard cycle time (SCT) exceeds the limit
- the safety related validation time (SRVT) exceeds the limit
- the angle output is 200°

DIS makes sense!

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

www.dis-sensors.com

4. Certification

EC Type examination by:Name:DEKRA testing and Certification GmbHAdress:Handwerkstraße 15, D-70565, Stuttgart, GermanyIdentification Nr.:0158EC Type-Examination Certificate no. 4821024.21001Certificate valid until June 14th 2026Certified level: SIL CL2 (claim limit 2 according to IEC 62061) & PLd (according to EN ISO 13849)Architecture: HFT=1 (according to IEC 62061) & CAT3 (according to EN ISO 13849)

5. Inclination sensor explained

An inclinometer measures the angle(s) of the device with respect to earth gravity, using earth gravity vector as external reference. The inclinometer involved is based on an accelerometer. The acceleration values are used to calculate the angle(s). The device takes both the static component (100%) and the dynamic component (partial, depending on frequency and bandwidth-setting) into account. The device will periodically send a CAN message on the CAN-bus containing the angle(s) in degrees.

6. Safety function

The safety function of the inclinometer sensor is to generate angle information based on acceleration values (caused by gravitation) measured by a MEMS acceleration sensor chip. Based on this angle information the safety controller of the application can switch the machine to safe-mode in order to prevent for a dangerous situation.

Example: a crane having a maximum tilt angle of the chassis. If the tilt angle of the chassis exceeds a certain critical value, the crane will fall over. To prevent for this an inclinometer can be mounted on the chassis, measuring the X- and Y tilt of the chassis. The safety controller of the application should monitor the X- and Y tilt angles and should switch the crane to safe-mode as soon as a certain tilt angle for X and/or Y exceeds the limits for the application. This will significantly reduce the risk of a dangerous situation to happen.

7. Hardware setup

Connection:

Default:

2x 5-pins M12 connector (A-coding), female & male, loop-through. According to CiA303 V1.8.0

Pin 1:	Shield	1 7	7 1
Pin 2:	Vcc		
Pin 3:	Gnd & CAN_GND		
Pin 4:	CAN_H		
Pin 5:	CAN_L		2 1
		Male	Female

Figure 1 Layout CAN bus connector

Optional:	1x 5-pins M12 connector (A-coding) male only CAN-Cable with 5-pins M12 connector (A-coding) male CAN-Cable 5-wire
CAN-bus termination 120	Ω
Default:	no CAN-bus termination inside
Optional:	CAN-bus termination inside

Tip: the last CAN-device in the chain should be terminated. For this purpose you can use the M12 male 5-pin termination resistor' (DIS article number 10217) or the M12 female 5-pin termination resistor' (DIS article number 10194).

8. Signal processing

The Safety sensor transmits SRDO messages. These message must be used to check the data and timing. In this SRDO message the angle information is available in normal and in inverse format. Customer should compare these messages in order to check the sensor output is safe. It is also possible to send the data via the TPDO message according to CiA410 but in this case the sensor should be treated as a non-safety sensor. An output filter is available for a stable signal. To compensate for mounting tolerances a pre-set/zero adjustment option is available. When pre-set/zero values are changed a CRC must be calculated off-line (CRC calculate tool available) and written to the sensor. The settings of the SRDO messages are also protected with a CRC code. When these are changed also new CRC code must be determined. When the sensor detects a failure an emergency message is generated and a safe state is activated. In the safe state no communication is possible (No SRDO, TPDO and Heartbeat).

8.1 Sample rate:

The internal g-sensor chip is sampled every 10ms. Each sample of the element consists of 16 samples for each axis. Resulting in sample rate of 1600 Hz. These samples are input for a low-pass Bessel filter. Each 10ms new data is available for the CAN bus.

8.2 Low-pass Bessel filter (for firmware v2.5.4 / V4.0 and above)

The sampled MEMS data is processed by a 2nd order low-pass Bessel filter in default. You can set the order of this filter also to 1st order or 3rd order with CAN object dictionary (index 3014h). The cut off frequency is 10Hz fixed.

8.3 Output filter:

The output of the sensor can be extra filtered by a 1st order low-pass filter. Default this output filter is disabled. Via the CAN object dictionary (index 300Eh) this filter can be controlled, by setting the time-constant in ms, with a maximum of the redundancy compare time (set by index 4006h sub-index 02h).

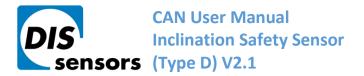
The time constant is defined as the time in which the output changes to 70% of the step after a step response. The -3dB frequency can be calculated by the formula f = 1 / (2*pi*time-constant). This -3dB frequency is independent of a change in TPDO1 event time and the SRDO refresh time. But when the output filter time-constant is set < min. [TPDO1 event time, the SRDO refresh time], the output filter is disabled. With the factory default, the filter time-constant can be set within 50ms – 2000ms, other value will disable the filter.

8.4 Averaging:

The FIR filtered values are averaged during the TPDO1 cycle time set by the customer. A longer TPDO cycle time results is a smaller bandwidth and therefore a more stable output signal (less noise), but also more phase delay. e.g. if Event time TPDO1 is 10 ms (fastest time) \rightarrow a filtered value of 16 samples is available. e.g. if Event time TPDO1 is 100 ms \rightarrow an average value of 10*16 samples is available.

8.5 Peak Suppression Filter:

Two Peak Suppression Filters (PSF) are implemented to reduce unwanted disturbances in the inclination measurement caused by acceleration peaks.


Filter principle: as inclination normally changes relative slow, a sudden peak in the inclination signal indicates an acceleration peak instead of a real inclination angle change. In this case, the filter can make the sensor ignore this peak for a certain time.

PSF in the redundancy compare chain (object 4007h):

The redundancy compare chain checks the difference between the two redundant MEMS chips. The filter helps to prevent for false safety alarms.

DIS makes sense!

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

www.dis-sensors.com

PSF in the inclination output chain (object 4008h):

The filter in the output chain makes the inclination output more stable and more realistic

PSF can be adjusted with 2 parameters:

- Angle (°): This parameter sets the threshold for the peak. Only peaks above this threshold will be filtered. Setting this angle parameter to 0° will disable the PSF
- Time (ms): After the peak suppression filter becomes active, it will hold the inclination signal for a certain period of time, set by this parameter.

Default values for Object 4007h: on, 3°, 40ms Default values for Object 4008h: on, 9°, 50ms

9. Pre-set/zero adjustment:

To eliminate mechanical offsets a pre-set/ zero value can be added. This can be done with the pre-set/zero adjustment method, so introducing a permanent offset on the output of the sensor (centre point = middle of measuring range). The current position will be regarded as the new pre-set/zero position. This can be done limited to 100.000x. (The value is written in EEPROM. The write actions for EEPROM is limited to 100.000x) Via CAN object 300Fh (see sensor specific part) the centering/zeroing can be done for each axis separate or for both axis at the same time. Status information of the result is available from the same object 300Fh Since the offset has direct influence on the output angle, the pre-set/zero value is protected with a CRC code. This CRC code must be set via object 63FFh. When the CRC code is written it must be validated with object 63FE sub id 0 writing data A5h.

The polynomial of the CRC code is:

$$g(x) = x^{16} + x^{12} + x^5 + 1$$

Order	Index	Sub index	Value	Size	Data
1	6200h	00h	Highest sub index supported	1 octet	a_7 to a_0
2		01h	Sub index number	1 octet	$b_{7}^{1} to \ b_{0}^{1}$
3		0111	Safety slope longitudinal offset (pre-set) value	2 octets	c_{15} to c_0
4		02h	Sub index number	1 octet	$b_7^2 to b_0^2$
5		UZN	Safety slope lateral offset(pre-set) value	2 octets	d_{15} to d_0

Table 1 Object fields for zero value (pre-set) CRC calculation

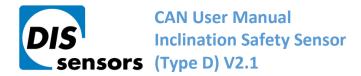
For CRC calculation a PC tool is developed and can be found on the DIS web site <u>www.dis-sensors.com</u> We have implemented two different CRC-calculations. Please check your firmware version number first, and then select the right Firmware version when using the PC-tool.

A CRC code is also oblige for SRDO1 messages. For detailed information about generating see EN 50325-5. This CRC code can also be calculated with the same PC tool.

10. Accelerator element tolerance

The sensor consists of two accelerator elements. The acceleration values of these elements are converted to angles. These angles are compared and a safe state is set when the elements differ too much. To prevent for false alarms, a tolerance can be configured. The tolerance consists of allowing an angle deviation during a certain time.

These values are adjustable via object 4006h sub- index 01h and 02h. The default values are 300d and 200d (3° during 2000 ms). The actual values used by the customer should fit the application involved. Before using this sensor and with the settings chosen the customer should evaluate risks in order to check whether the chosen settings satisfies his safety requirements. Manufacturer is not responsible for any damage caused by these customer-setting, even when the manufacturer defaults are used.


Definitions for the Redundancy error:

'Redundancy Compare time' (user programmable, default 2000ms)

'Redundancy Compare angle' (user programmable, default 3°)

11. Output invalid

A vertical device measures the angle relative to the gravity. When a device is tilted towards the horizontal plane for more than 45°, the angle can't be accurately measure because the gravitation vectors become shorter. In this case the output is set to 200°. This value indicates that the output is invalid.

For horizontal devices the same principle is valid. When the longitudinal axis is greater than 45 degree the output for lateral axis is set to 200°. When the lateral axis is greater than 45° the longitudinal is set to 200°. The output is also invalid when the range limits are reached. Example when angle is 32° for a ±30 device the output is limit to $\pm 30^{\circ}$. For a ± 90 device the angle is limited to $\pm 90^{\circ}$.

12. Writing objects

When writing an object it can have a major influence on the output. To prevent unauthorized changes most write action can only be executed when the device is in pre-operational state. According to EN 50325-5

13. Changing SRDO1 settings

When changing an SRDO1 setting the sensor must be in pre-operating state. The direction 1301h sub id 01h must be disabled by writing 00h to object 1301h sub id 01h. When the SRDO setting is changed the CRC code must also be changed and activated. Finally the data must be stored in EEPROM

Example to change SRDO1 refresh time

	0		
Load object:	1301h sub id 01h with:	00h	disable SRDO1 communication.
Load object:	1301h sub id 02h with:	0064h	new SRDO1 refresh time.
Load object:	1301h sub id 01h with:	01h	enable transmit SRDO1 communication.
Load object:	13FFh sub id 01h with:	xxxxh	code from CRC calculation tool.
Load object:	13FEh sub id 00h with:	A5h	validate new CRC.
Load object:	1010h sub id 01h with:	"save"	or 65766173h write new SRDO1 refresh time, CRC and
validation to EE	PROM.		
A (1	: ممن بمام مطلع مرم مارير اممرم فمم م		a continued, the two provincing times is a contract to the desired time.

After a power reset and when the device is set to operational, the transmission time is equal to the desired time.

M info@dis-sensors.com

www.dis-sensors.com

ISO 9001 BUREAU VERITA Certification

14. Internal diagnostic tests

To ensure safety the hard- and software of the safety sensor is continue checked. When a failure is detected, an emergency message is sent. After sending this message, the device goes to a safe state, in which no communication is possible (No SRDO, TPDO and Heartbeat). In this state, a NMT reset will not restart the sensor. Failure should be analyzed by reading out the emergency message. If the error can be fixed, give the sensor a new power cycle will restart the communication. If it is a 'sensor element error (redundancy error), you might consider to update 'redundancy compare time' and/or 'redundancy compare angle. If the error cannot be fixed, please contact your distributor.

The receiving application should detect that no communication is possible and shall set the system to a safe state.

Table 2 Emergency code

CAN Connectio	n Object	: ID: 080h+NODE_ID (emergency message)
Byte number	Туре	Description
01h and 00h	U16	Error-code:
		0000h: no error
		FF00h: CAN Open device specific error code
02h	U8	Error-register:
		00h: no error
		01h: error register object 1001h
04h and 03h	U8	Diagnose error CAN stack:
		0000h: No error
		0001h: Reset state
		0002h: Can driver has to be reset
		0004h: Safety cycle is ready
		0008h: reserved
		0010h: Timeout by watchdog diagnose
		0020h: Overvoltage
		0040h: Unknown interrupt occurs
		0080h: CSC stack has entered safety stop
		0100h: Initialization error
		0200h: Can error
		0400h: CAN NMT state error
		0800h: Diagnose error
		1000h: Safety cycle error
		2000h: SRDO error
		4001h: RAM error
		8000h: Unknown error
		-multiple errors can be indicated (bitwise OR-ed) simultaneously.
		-when an overvoltage occur the device stays permanent in safe state
05h		reserved
06h		Diagnose error
	00h	Start CRC calculation ROM
	01h	Check register
	02h	Check stack
	03h	Check addressing part unit 1
	04h	Check addressing part unit 2 Check conditional jumps
	05h 06h	Check conditional jumps
06h Check opcode 07h Check CRC for SRDO's		Check CRC for SRDO's
	09h	Check time stamp
	0.511	Check time stamp

DIS Sensors bv Oostergracht 40

3763 LZ Soest | The Netherlands

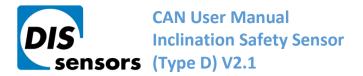
T +31 (0)35 - 603 81 81

M info@dis-sensors.com

W www.dis-sensors.com

	0Ah	Wait for end of CRC calculation for CSC main
	0Bh	Start CRC calculation ROM for application
	0Ch Wait for end of CRC calculation for application	
	0Dh Start CRC calculation ROM for start-up monitor	
	0Eh	Wait for end of CRC calculation for start-up monitor
	0Fh	Check RAM with GALPAT algorithm
	10h	Check software interrupt
	11h	Check software interrupt was ok
	12h	Check undefined instruction interrupt
	19h	Check undefined instruction interrupt was ok
	7Fh	Idle state
07h		Application error
	00h	No application error
01h Unknown interrupt occurs 02h Safety RAM error		Unknown interrupt occurs
		Safety RAM error
	04h	SRDO error
	08h	3V3 monitor error
	10h	Sensor element error (Redundancy Error)
	20h	RAM error
	40h	EEPROM error
	80h	Watchdog or 5V under voltage error
		multiple errors can be indicated (bitwise OR-ed) simultaneously.
Sensor goes	to safe stat	e (stop state) when an error is reported. Sensor must be power cycled to restart.
5		

Example:


Receive COB-id 81h with data 00h FFh 01h 80h 00h 00h 0Eh 08h 81 emergency message of node id 01h 00h FFh-> FF00h CAN Open device specific error code 01h-> error register object 1001h 80h 00h ->0080h CSC stack has entered safety stop 00h reserved 0Eh Wait for end of CRC calculation for start-up monitor 08h. 3V3 monitor error

15. CAN Predefined Connection Object ID's

Table 3 COB-ID's

	Standard CAN Connection Object ID's (Most used)					
CAN-ID	Data	Description (client = CAN master, server = sensor)				
000h		NMT Network Management				
080h		Sync command to sensor				
080h + node-ID		Emergency message from sensor				
0FFh + 2 * node-ID		SRDO1 normal message				
100h + 2 * node-ID		SRDO1 inverse message				
180h + node-ID		TPDO1 message from sensor				
280h + node-ID		TPDO2 message from sensor				
580h + node-ID		SDO Download Request: Feedback from sensor (server to client)				
600h + node-ID		SDO Upload Request: Write to sensor (client to server)				
700h + node-ID	00h	heartbeat from sensor, boot-up mode				
	04h	heartbeat from sensor, stopped mode				
	05h	heartbeat from sensor, operational mode				
	7Fh heartbeat from sensor, pre-operational mode					

DIS Sensors bv Oostergracht 40 3763 LZ Soest | The Netherlands 🛛 W www.dis-sensors.com

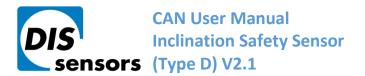
T +31 (0)35 - 603 81 81

M info@dis-sensors.com

16. CAN Object Dictionary Entries (Communication Profile section)

			n profile s		
ndex	Sub- index	Туре	Read/ Write	Data	Description
.000h	00h	U32	R		Device Type
	0011	052	, N	3001019Ah	= Inclination, C1 (360°) normal TPDO
				3002019Ah	= Inclination, C2 (±90° or ±30°) normal TPDO
0041	0.01		<u> </u>	5002015/11	
L001h	00h	U8	R		Error Register
				e.g. 00h	= Normal operation
				e.g. 81h	= Device error
1003h	00h	U32	R		Predefined error field
1005h	00h	U32	R+W		COB-ID SYNC
1008h	00h	ASCII	R	e.g. DIS sensors QGxx CANopen Safety	Device name
1009h	00h	ASCII	R	e.g. 12986-01-A0	Hardware version
100Ah	00h	ASCII	R	e.g. FW275-4.0.0	Software version
100Ch	00h	U16	R		Guard time
100Dh	00h	U8	R		Life time factor
1010h	00h	U8	R	3	Number of entrees
	01h	U32	R+W	"save" in ASCII Or "65766173h"	Save all parameters in EEPROM
	02h	U32	R+W	"save" in ASCII Or "65766173h"	Save communication parameters in EEPROM
	03h	U32	R+W	"save" in ASCII Or "65766173h"	Save application parameters in EEPROM
1011h	00h	U8	R	3	Number of entrees
	01h	U32	R+W	"load" in ASCII Or "64616F6Ch"	Restore all parameters from EEPROM
	02h	U32	R+W	"load" in ASCII Or "64616F6Ch"	Restore communication parameters from EEPROM
	03h	U32	R+W	"load" in ASCII Or "64616F6C h"	Restore application parameters from EEPROM
1017h	00h	U16	R+W		Heartbeat time (ms)
		010		e.g. 07D0h/2000d	= 2000 ms
				e.g. 0000h	= 0 ms (heartbeat switched off, default)
1018h	01h	U32	R	4	Vendor ID (000001BDh)
101011	02h	U32	R		Product Code
	0211	052	, N	e.g.04000001h	= Inclination 1-axis (vertical plane): 360°
				e.g.04000002h	= Inclination 2-axis (vertical plane): 2x ±90°
				e.g.04000003h	= Inclination 2-axis (horizontal plane): $2x \pm 30^{\circ}$
	03h	U32	R	C.B.040000011	Firmware version sensor (000x000yh)
	0311	032	к	o a 00030001h	= v2.1
	04h	U32	R	e.g. 00020001h	Serial number sensor (32 bit, unique)
	0411	032	ĸ	e.g. 00000000h up to FFFFFFFh	Senai number sensor (32 bit, unique)
1300h	00h	U8	R+W		GFC parameter
				e.g. 00h	= Invalid
				e.g. 01h	= Valid
1301h	00h	U8	R	6	Number of entrees SRDO1 communication
					parameter
	01h	U8	R+W		SRDO1 direction
				00h	= Disabled
				01h	= Tx/SRDO producer (default)
				02h	= RX/SRDO consumer
	02h	U16	R+W		SRD01 refresh time/SCT
		-		e.g. 50h/80d	= 80 ms default
	03h	U8	R+W		Safety-relevant validation time (SRVT)
				e.g. 14h/20d	= 20 ms default
	04h	U8	R+W	- 0,	Transmission type
				e.g. FEh/254d	= Asynchronous (default)
	05h	U32	R+W		COB-ID1
				e.g. 101h	0xFFh + Node ID *2 (default)
	06h	U32	R+W		COB-ID2
				e.g. 102h	0x100h + Node ID *2 (default)
13FEh	00h	U8	R+W	-	SRDO configuration
-	-	-		e.g. A5h	= SRDO configuration signature valid
	1	1	1	Other value	= SRDO configuration signature not valid

CAN User Manual Inclination Safety Sensor ensors (Type D) V2.1


DIS Sensors bv Oostergracht 40 3763 LZ Soest | The Netherlands **T** +31 (0)35 - 603 81 81

M info@dis-sensors.com

W www.dis-sensors.com

Index	Sub-	Туре	Read/	Data	Description
	index		Write		
13FFh	00h	U8	R	4	Number of entrees
	01h	U16	R+W		CRC of SRDO1
1400h	00h	U8	R	2	Number of entrees Receive PDO 1
	01h	U32	R+W		COB-ID used by RPDO1
				C0000201h	= RPDO1 disabled
	02h	U8	R+W		Transmission type
				FFh	= event-driven (default)
1401h	00h	U8	R	2	Number of entrees Receive PDO 2
	01h	U32	R+W		COB-ID used by RPDO2
				C0000301h	= RPDO2 disabled
	02h	U8	R+W		Transmission type
				FFh	= event-driven (default)
1600h	00h	U8	R		Receive PDO mapping
				00h	= Mapping disabled
	01h-	U32	R	0000000h	= Disabled
	08h				
1601h	00h	U8	R	8	Number of entrees Receive PDO mapping
	01h-	U32	R	0000000h	= Disabled
	08h				
1800h	00h	U8	R	5	Number of entrees
	01h	U32	R+W		TPDO1 event-mode
	-			e.g. 40000181h	= Enable
				e.g. C0000181h	= Disable (default)
	02h	U8	R+W		TPDO1 sync-mode
				e.g. 01h	= Enable
				e.g. FFh	= Disable (default)
	05h	U16	R+W	e.g. 0032h/50d	TPDO1 event-time (time in ms)
				e.g. 0000h	= 50 ms (default)
					= 0 ms (disable TPDO1)
					(Max. = 5000ms)
1801h	00h		U8	5	Number of entrees
	01h	U32	R+W		TPDO2 event-mode
				e.g. 40000281h	= Enable
				e.g. C0000281h	= Disable (default)
	02h	U8	R+W		TPDO2 sync-mode
				e.g. 01h	= Enable
				e.g. FFh	= Disable (default)
	05h	U16	R+W		TPDO2 event-time (time in ms)
				e.g. 0032h/50d	= 50 ms (default)
				e.g. 0000h	= 0 ms (disable TPDO2)
					(Max. = 5000ms)

DIS Sensors bv Oostergracht 40

3763 LZ Soest | The Netherlands

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

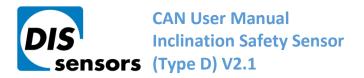
W www.dis-sensors.com

17. CAN Object Dictionary Entries 360v device (Application Specific Profile section)

Table 5 Application specific profile section for 360 degree device

Index	Sub index	Туре	Read/ Write	Data	Description
1381h	00h	U8	R	4	Number of entrees
	01h	U32	R		SR application data object 1 (normal)
				e.g. 62100108h	= Normal longitudinal bit 0-7
	02h	U32	R	e.g. 62110108h	SR application data object 1(inverse) = Inverse longitudinal bit 0-7
	03h	U32	R	e.g. 021101060	SR application data object 2 (normal)
	0511	032	, it	e.g. 62100208h	= Normal longitudinal bit 8-15
	04h	U32	R		SR application data object 2 (inverse)
				e.g. 62110208h	= Inverse longitudinal bit 8-15
3000h	00h	U8	R	1	Number of entrees
	01h	U8	R+W		Node-ID
				01h up to 7Fh	01h (default) up to 7Fh
					(when Node-ID >3Fh non-standard COB-ID of SRD01 must be used)
					(changes are being affected after a power cycle only)
3001h	00h	U8	R	1	Number of entrees
500111	01h	U8	R+W	-	Baud rate (kbit/s)
	0111	00		e.g.06h	= 50
				e.g.05h	= 100
				e.g.04h	= 125 (default)
				e.g.03h	= 250
				e.g.02h	= 500
				e.g.01h	= 800
				e.g.00h	
20051	0.01			4	(changes are being affected after a power cycle only)
300Eh	00h	U8	R	1	Number of entrees
	01h	U16	R+W	Time in ms	Output filter (1 st order low pass filter):
				e.g. 0000h e.g. 0064h/100d	= Disabled (default) = Enabled, 100 ms (f=1.59 Hz)
				c.g. 00041/1000	(Max. = 'redundancy compare time')
300Fh	00h	U8	R	1	Number of entrees
	01h	S8	R+W		Pre-set adjustment angle.
	01			e.g. 01h	Write 01h: start zero longitudinal
				0	Read 00h= zero successful,
					Read FFh= zero unsuccessful
3014h	00h	U8	R	1	Number of entrees
	01h	U8	R+W		Low pass Bessel filter f _{-3dB} =10Hz
				e.g. 00h	= OFF
				e.g. 01h	= ON 1st order
				e.g. 02h	= ON 2nd order (default)
400Ch	005	110		e.g. 03h	= ON 3rd order
4006h	00h 01h	U8 U16	R R+W	2	Number of entrees Redundancy Compare Angle
	0111	010	IV + AA		(Maximal angle deviation between two elements)
				e.g. 012Ch/300d	= 3,00° (default)
				e.g. 001Eh/30d	= 0,3°
					(Max. = 18°)

DIS Sensors bv Oostergracht 40


T +31 (0)35 - 603 81 81

M info@dis-sensors.com

3763 LZ Soest | The Netherlands W www.dis-sensors.com

Index	Sub index	Туре	Read/ Write	Data	Description
	02h	U16	R+W	e.g. 00C8h/200d	Redundancy Compare Time [x10 ms] (Time within maximal deviation is allowed) = 2000 ms (default) (Max. = 10 s)
4007h	00h	U8	R	1	Number of entrees
	01h	U16	R+W	e.g. 0000h e.g. 012Ch/300d	Peak suppression redundancy angle = Disabled = 3° (default) (Min. = 3°)
	02h	U16	R+W	e.g. 0004h/4d e.g. 03E8h/1000d	Peak suppression redundancy time [x10 ms]. = 40 ms (default) (Max. = 10 s)
4008h	00h	U8	R	1	Number of entrees
	01h	U16	R+W	e.g. 0000h e.g. 0384h/900d e.g. 012Ch/300d	Peak suppression output angle = Disabled = 9° (default) (Min.= 3°)
	02h	U16	R+W	e.g. 0005h e.g. 0032h/50d e.g. 03E8h/1000d	Peak suppression output time [x10 ms]. = 50 ms (default) = 500 ms (Max. = 10 s)
6000h	00h	U8	R	e.g. 000Ah/10d	Resolution = 0,01°
6010h	00h	S16	R		Longitudinal slope
6011h	00h	U8	R+W	e.g. Bit0 = 0 e.g. Bit0 = 1 e.g. Bit1 = 0 e.g. Bit1 = 1 Other bits	Operating parameter longitudinal slope = Slope normal = Slope inverse = Pre-set disabled = Pre-set enabled = No function
6200h	00h	U8	R	2	Number of entrees
	01h	S16	R+W		Pre-set value longitudinal
	02h	S16	R+W		Pre-set value lateral
6210h	00h	U8	R	2	Number of entrees
	01h	U8	R		Bit 0-7 of normal SRDO longitudinal slope
67116	02h	U8	R	2	Bit 8-15 of normal SRDO longitudinal slope Number of entrees
6211h	00h 01h	U8 U8	R	2	Bit 0-7 of inverse SRDO longitudinal slope
	01h 02h	U8 U8	R R		Bit 8-15 of inverse SRDO longitudinal slope
63FEh	00h	U8	R+W	e.g. A5h e.g. 00h	Pre-set configuration field = Signature valid = Signature not valid
63FFh	00h	U8	R	1	Number of entrees
	01h	U16	R+W		Pre-set value signature

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

W www.dis-sensors.com

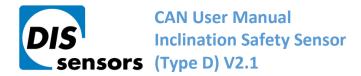
18. CAN Object Dictionary Entries ±30h and ±90h devices (Application Specific Profile section)

Table 6 Application specific profile section for ±30h and ±90h devices

Index	Sub	Туре	Read/	Data	Description
	index	71	Write		
1381h	00h	U8	R	8	Number of entrees
130111	01h	U32	R	0	SRD01 mapping object 1 (normal)
	0111	0111 032		e.g. 62100108h	= Normal longitudinal bit 0-7
	02h U32		R	0.5. 0210010011	SRDO1 mapping object 1 (inverse)
	0211	032		e.g. 62110108h	= Inverse longitudinal bit 0-7
	03h	U32	R		SRDO1 mapping object 2 (normal)
				e.g. 62100208h	= Normal longitudinal bit 8-15
	04h	U32	R		SRDO1 mapping object 2 (inverse)
				e.g. 62110208h	= Inverse longitudinal bit 8-15
	05h	U32	R		SRDO1 mapping object 3 (normal)
				e.g. 62200108h	= Normal lateral bit 0-7
	06h	U32	R		SRDO1 mapping object 3 (inverse)
				e.g. 62210108h	= Inverse lateral bit 0-7
	07h	U32	R		SRDO1 mapping object 4 (normal)
			_	e.g. 62200208h	= Normal lateral bit 8-15
	08h	U32	R	600 / 0000l	SRDO1 mapping object 4 (inverse)
2000				e.g. 62210208h	= Inverse lateral bit 8-15
3000h	00h	U8	R	1	Number of entrees
	01h	U8	R+W	04h	Node-ID
				01h up to 7Fh	(When Node Id >3Fh non-standard COB-ID of SRDO1 must be used)
2001	0.01	110		1	(Changes are being affected after a power cycle only) Number of entrees
3001h	00h	U8	R	1	
	01h	U8	5.14	0.01	Baud rate (kbit/s)
			R+W	e.g. 06h	= 50
				e.g. 05h e.g. 04h	= 100 = 125 (default)
				e.g. 03h	= 250
				e.g. 02h	= 500
				e.g. 01h	= 800
				e.g. 00h	= 1000
					(Changes are being affected after a power cycle only)
300Eh	00h	U8	R	1	Number of entrees
	01h	U8	R+W	Time in ms	Output filter (1 st order low pass):
	-			e.g. 0000h	= Disabled (default)
				e.g. 0064h	= Enabled, 100 ms (f=1.59 Hz)
				-	(Max. = 'redundancy compare time')
300Fh	00h	U8	R	1	Number of entrees
	01h	S8	R+W		Pre-set adjustment
				e.g. Write 01h	= start zero longitudinal
				e.g. Write 02h	= start zero lateral
				e.g. Write 03h	= start longitudinal and lateral
				e.g. Read 00h	= zero successful,
				e.g. Read FFh	= fail zero longitudinal
201.45	005			e.g. Read FEh	= fail zero lateral
3014h	00h	U8	R	1	Number of entrees
	01h	U8	R+W	o.g. 00h	Low pass Bessel filter f _{-3dB} =10Hz = OFF
				e.g. 00h e.g. 01h	= OFF = ON 1st order
				e.g. 02h	= ON 1st order = ON 2nd order (default)
				e.g. 03h	= ON 3rd order
4006h	00h	U8	R	1	Number of entrees
	01h	U16	R+W		Redundancy Compare Angle
					(Maximal angle deviation between two elements)
				e.g. 012Ch/300d	= 3,00° (default)

DIS makes sense!

DIS Sensors bv Oostergracht 40


T +31 (0)35 - 603 81 81

M info@dis-sensors.com

3763 LZ Soest | The Netherlands W www.dis-sensors.com

Index	Sub index	Туре	Read/ Write	Data	Description
					(Max = 3° (±30h) / 9° (±90h))
	02h	U16	R+W	e.g. 00C8h/200d	Redundancy Compare Time [x10ms]. (Time within maximal deviation is allowed) = 2000 ms (default) (Max. = 10 s)
4007h	00h	U8	R	1	Number of entrees
	01h	U16	R+W	e.g. 0000h e.g. 0003h	Peak suppression redundancy angle = Disabled = 3° (default) (Min. = 3°)
	02h	U16	R+W	e.g. 0004h/04d	Peak suppression redundancy time [x10 ms]. = 40 ms (default) (Max. = 10 s)
4008h	00h	U8	R	1	Number of entrees
	01h	U16	R+W	e.g. 0000h e.g. 0384h/900d	Peak suppression output angle = Disabled = 9° (default) (Min. = 3°)
	02h	U16	R+W	e.g. 0005h/5d	Peak suppression output time [x10 ms]. = 50 ms (default) (Max. = 10 s)
6000h	00h	U8	R	e.g. 0Ah/10d	Resolution = 0,01°
6010h	00h	S16	R		Longitudinal slope
6011h	00h	U8	R+W	e.g. Bit0 = 0 e.g. Bit0 = 1 e.g. Bit1 = 0 e.g. Bit1 = 1 e.g. Other bits	Operating parameter longitudinal slope = Slope normal = Slope inverted = Pre-set disabled = Pre-set enabled = No function
6020h	00h	S16	R		Lateral slope
6021h	00h	U8	R+W	e.g. Bit0 = 0 e.g. Bit0 = 1 e.g. Bit1 = 0 e.g. Bit1 = 1 e.g. Other bits	Operating parameter lateral slope = Slope normal = Slope inverted = Pre-set disabled = Pre-set enabled = No function
6200h	00h	U8	R	2	Pre-set value
	01h	S16	R+W		Pre-set value longitudinal
6242	02h	S16	R+W		Pre-set value lateral
6210h	00h	U8 U8	R	2	Number of entrees Bit 0-7 of normal SRDO longitudinal slope
	01h 02h	U8 U8	R R		Bit 8-15 of normal SRDO longitudinal slope
6211h	02h	U8	R	2	Number of entrees
	01h	U8	R		Bit 0-7 of inverse SRDO longitudinal slope
	02h	U8	R		Bit 8-15 of inverse SRDO longitudinal slope
6220h	00h	U8	R	2	Number of entrees
	01h	U8	R		Bit 0-7 of normal SRDO lateral slope
6224	02h	U8	R		Bit 8-15 of normal SRDO lateral slope
6221h	00h	U8	R	2	Number of entrees
	01h 02h	U8 U8	R R		Bit 0-7 of inverse SRDO lateral slope Bit 8-15 of inverse SRDO lateral slope
63FEh	02h 00h	U8	R+W		Pre-set configuration field
				A5h 00h	= Signature valid = Signature not valid
63FFh	00h	U8	R	1	Number of entrees
	01h	U16	R+W		Pre-set value signature

W www.dis-sensors.com

19. EDS files

The "Electronic Data Sheet" (EDS file) is a file format that describes the communication behavior and the object dictionary entries of a device. In fact it's a template. This allows tools such as CAN configuration tools to handle the device properly. The file format is described in CiA306 V1.3.0

The EDS-file contains all possible settings and functions for the device by describing the CAN object dictionary for the device to be set by CAN commands.

The EDS-file does not contain a customer specific configuration description (the values of the object dictionary, like i.e. the chosen baud rate, TPDO1 event time, Node ID etc.). For this purpose the customer can generate a so called DCF-file (Device Configuration File) with all customer specific settings out of the EDS-file. The DCF file is in fact the incarnation of the EDS-file.

After loading the DCF-file into the device you have to store the settings into EEPROM by index 1010h sub index 01h to store permanently, see "CAN Object Dictionary Entries".

The EDS-files available for sensors with embedded firmware version D-type described in this document should have a version D-type also.

The next EDS-files are available at <u>www.dis-sensors.com</u> under 'downloads':

- QG_Dtype_1_axis_360v_v*.*
- QG Dtype 2 axis 30h v*.*
- QG_Dtype_2_axis_90h_v*.*

20. Document revision control

V1.0 first release

V1.1 Add SRD1 objects programming. Add Writing objects in pre-operating state. Major text additions

V1.2 Add commend after review JK

V1.3 Safety information added (MvA)

V1.4 Layout changed (RMo), safety chapters modified (MvA)

V1.5 Change mapping object 1381h for 1 axis and 2 axis according to profile (RMo)

V1.6 20190725 Various more accurate descriptions, some parameters maximized, see release notes firmware v2.9 & v2.5.3

V1.7 20200831 Insert Peak suppression filter for MEMS elements and for inclination output (MvA)

V1.8 20210823 correct proof test period and pre-set disable/enable(SX).

V1.9 20210917 Re-certification / EC type examination by DEKRA successful. New certificate nr.

- V2.0 20220321 Add max. redundancy compare angle.(SX)
- V2.1 20230116 Add low-pass Bessel filter and new objects 1008-100Ah for the device information.(SX) 20230515 Input filter and the schematic updated for the new firmware. (SX)

CAN User Manual Inclination Safety Sensor (Type D)V2.1

DIS Sensors by	v
----------------	---

Oostergracht 40

T +31 (0)35 - 603 81 81

M info@dis-sensors.com

3763 LZ Soest | The Netherlands 🛛 W www.dis-sensors.com

Page 18 of 19

A. Appendixes1 Schematic overview inclination measurement (for firmware v2.5.3 / V3.1 and below)

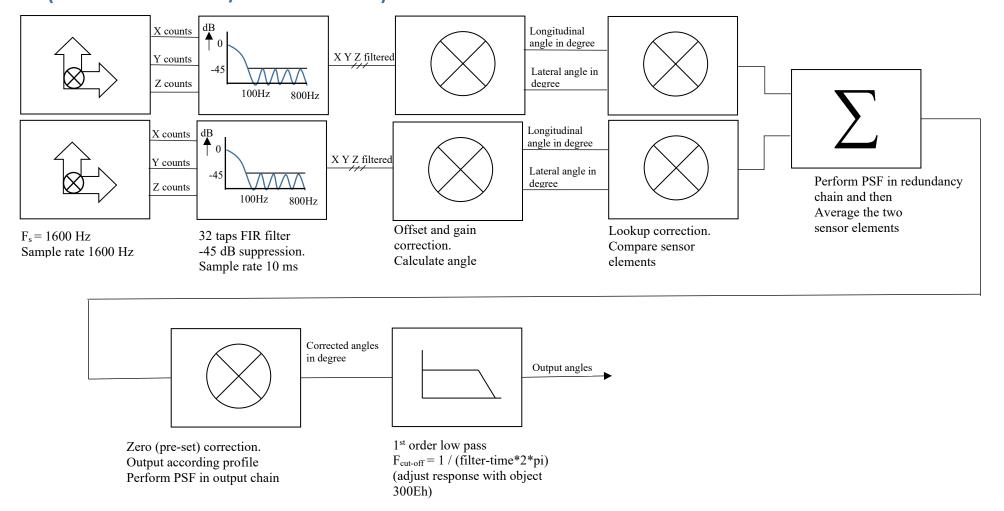
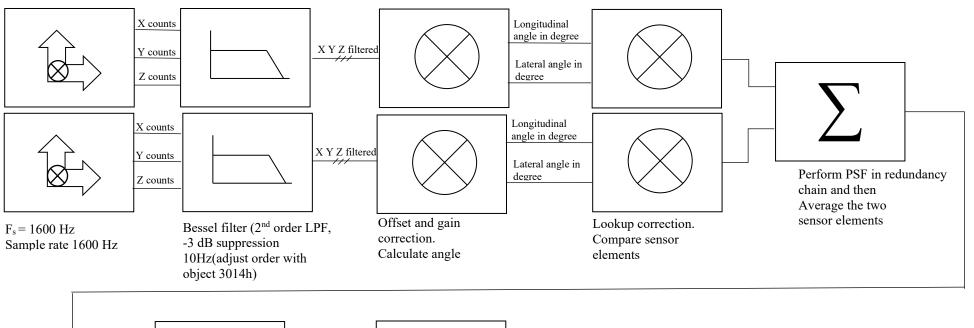


Figure 2 Schematic overview inclination measurement.



CAN User Manual Inclination Safety Sensor (Type D)V2.1

DIS Sensors bv	Т	+31 (0)35 - 603 81 81	
Oostergracht 40	٨	info@dis-sensors.com	
3763 LZ Soest The Netherlands	V	www.dis-sensors.com	
			Page 19 of 19

B. Appendixes2 Schematic overview inclination measurement (for firmware v2.5.4 / V4.0 and above)

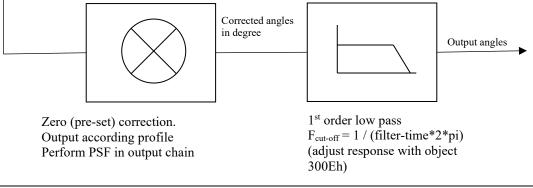


Figure 3 Schematic overview inclination measurement.

